Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic adaptation of Tibetan poplar (Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau.

Identifieur interne : 000382 ( Main/Exploration ); précédent : 000381; suivant : 000383

Genetic adaptation of Tibetan poplar (Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau.

Auteurs : Chenfei Zheng ; Lizhi Tan ; Mengmeng Sang ; Meixia Ye ; Rongling Wu

Source :

RBID : pubmed:33144942

Abstract

Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar, Populus szechuanica var. tibetica, distributed from low (~2,000 m) to high altitudes (~3,000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating population genomic and landscape genomic analyses, we detected two hotspot regions, one containing four genes associated with altitudinal variation, and the other containing ten genes associated with response to solar radiation. These genes participate in abiotic stress resistance and regulation of reproductive processes. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.

DOI: 10.1002/ece3.6508
PubMed: 33144942
PubMed Central: PMC7593140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic adaptation of Tibetan poplar (
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
) to high altitudes on the Qinghai-Tibetan Plateau.</title>
<author>
<name sortKey="Zheng, Chenfei" sort="Zheng, Chenfei" uniqKey="Zheng C" first="Chenfei" last="Zheng">Chenfei Zheng</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tan, Lizhi" sort="Tan, Lizhi" uniqKey="Tan L" first="Lizhi" last="Tan">Lizhi Tan</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sang, Mengmeng" sort="Sang, Mengmeng" uniqKey="Sang M" first="Mengmeng" last="Sang">Mengmeng Sang</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Statistical Genetics Pennsylvania State University Hershey PA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Center for Statistical Genetics Pennsylvania State University Hershey PA USA.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33144942</idno>
<idno type="pmid">33144942</idno>
<idno type="doi">10.1002/ece3.6508</idno>
<idno type="pmc">PMC7593140</idno>
<idno type="wicri:Area/Main/Corpus">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000029</idno>
<idno type="wicri:Area/Main/Curation">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000029</idno>
<idno type="wicri:Area/Main/Exploration">000029</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic adaptation of Tibetan poplar (
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
) to high altitudes on the Qinghai-Tibetan Plateau.</title>
<author>
<name sortKey="Zheng, Chenfei" sort="Zheng, Chenfei" uniqKey="Zheng C" first="Chenfei" last="Zheng">Chenfei Zheng</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tan, Lizhi" sort="Tan, Lizhi" uniqKey="Tan L" first="Lizhi" last="Tan">Lizhi Tan</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sang, Mengmeng" sort="Sang, Mengmeng" uniqKey="Sang M" first="Mengmeng" last="Sang">Mengmeng Sang</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Statistical Genetics Pennsylvania State University Hershey PA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Center for Statistical Genetics Pennsylvania State University Hershey PA USA.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar,
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
, distributed from low (~2,000 m) to high altitudes (~3,000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating population genomic and landscape genomic analyses, we detected two hotspot regions, one containing four genes associated with altitudinal variation, and the other containing ten genes associated with response to solar radiation. These genes participate in abiotic stress resistance and regulation of reproductive processes. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33144942</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic adaptation of Tibetan poplar (
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
) to high altitudes on the Qinghai-Tibetan Plateau.</ArticleTitle>
<Pagination>
<MedlinePgn>10974-10985</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.6508</ELocationID>
<Abstract>
<AbstractText>Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar,
<i>Populus szechuanica</i>
var.
<i>tibetica</i>
, distributed from low (~2,000 m) to high altitudes (~3,000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating population genomic and landscape genomic analyses, we detected two hotspot regions, one containing four genes associated with altitudinal variation, and the other containing ten genes associated with response to solar radiation. These genes participate in abiotic stress resistance and regulation of reproductive processes. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Chenfei</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2673-8068</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Lizhi</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sang</LastName>
<ForeName>Mengmeng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Meixia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics Pennsylvania State University Hershey PA USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.5tk1mc7</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Tibetan poplar</Keyword>
<Keyword MajorTopicYN="N">adaptation</Keyword>
<Keyword MajorTopicYN="N">gene flow</Keyword>
<Keyword MajorTopicYN="N">genetic loci</Keyword>
<Keyword MajorTopicYN="N">population genetic variation</Keyword>
</KeywordList>
<CoiStatement>The authors state that there is no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33144942</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.6508</ArticleId>
<ArticleId IdType="pii">ECE36508</ArticleId>
<ArticleId IdType="pmc">PMC7593140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 24;14(5):8740-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Sep;19(17):3789-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20723060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(5):602-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2486-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Nov;68(11):3260-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2019 May 15;35(10):1786-1788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30321304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Aug;188(4):941-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Sep;24(17):4348-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Feb 06;9:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Dec;4(12):981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E236-E243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29279400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(9):2178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Sep;19(17):3760-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20723056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2013 Sep;68(3):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23591087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 23;10(11):e0142864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26599762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Mar 15;176:192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25638402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Mar;22(5):1383-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23294205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Feb;47:106-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30445314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Sep;20(9):503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Jan;18(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2012 May;16(5):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2017 Oct 10;7(22):9426-9440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 Dec;27(23):4820-4838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30071141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2013 Oct;28(10):614-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23769416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Aug;47(4):519-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16827922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 1;28(15):2008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22641715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Dec;13(12):867-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Nov;14(11):807-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2016 Feb;17(2):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Jan 7;88(1):76-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1754-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Feb;41:73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 May;10(3):564-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(11):e1002967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Mar;27(3):650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Apr;15(4):378-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22372546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Apr-Jun;6(2):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Sep;195(1):205-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23821598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2011;9:e0151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Feb;225(4):1516-1530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31120133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Feb;209(3):1240-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26372471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Mar;202(3):1185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25817433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2015;49:315-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26436459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27596807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2013 Mar;13(2):306-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23311503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Nov 15;26(22):2867-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014;15 Suppl 1:S11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Oct;29(10):3143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Oct;180(2):977-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Apr;14(4):262-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478346</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Sang, Mengmeng" sort="Sang, Mengmeng" uniqKey="Sang M" first="Mengmeng" last="Sang">Mengmeng Sang</name>
<name sortKey="Tan, Lizhi" sort="Tan, Lizhi" uniqKey="Tan L" first="Lizhi" last="Tan">Lizhi Tan</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Ye, Meixia" sort="Ye, Meixia" uniqKey="Ye M" first="Meixia" last="Ye">Meixia Ye</name>
<name sortKey="Zheng, Chenfei" sort="Zheng, Chenfei" uniqKey="Zheng C" first="Chenfei" last="Zheng">Chenfei Zheng</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000382 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000382 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33144942
   |texte=   Genetic adaptation of Tibetan poplar (Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33144942" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020